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1. Riemann Integrable Functions

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a, b] and m ≤ f ≤ M on
[a, b] .

(ii): Let P : a = x0 < x1 < .... < xn = b denote a partition on [a, b]; Put ∆xi = xi − xi−1 and
‖P‖ = max∆xi.

(iii): Mi(f, P ) := sup{f(x) : x ∈ [xi−1, xi}; mi(f, P ) := inf{f(x) : x ∈ [xi−1, xi}.
Set ωi(f, P ) = Mi(f, P )−mi(f, P ).

(iv): (the upper sum of f): U(f, P ) :=
∑

Mi(f, P )∆xi
(the lower sum of f). L(f, P ) :=

∑

mi(f, P )∆xi.

Remark 1.1. It is clear that for any partition on [a, b], we always have

(i) m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(b− a).
(ii) L(−f, P ) = −U(f, P ) and U(−f, P ) = −L(f, P ).

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a, b]. We have the following assertions.

(i) If P ⊆ Q, then L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).
(ii) We always have L(f, P ) ≤ U(f,Q).

Proof. For Part (i), we first claim that L(f, P ) ≤ L(f,Q) if P ⊆ Q. By using the induction on
l := #Q−#P , it suffices to show that L(f, P ) ≤ L(f,Q) as l = 1. Let P : a = x0 < x1 < · · · < xn = b
and Q = P ∪ {c}. Then c ∈ (xs−1, xs) for some s. Notice that we have

ms(f, P ) ≤ min{ms(f,Q),ms+1(f,Q)}.

So, we have

ms(f, P )(xs − xs−1) ≤ ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c).

This gives the following inequality as desired.

(1.1) L(f,Q)− L(f, P ) = ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c)−ms(f, P )(xs − xs−1) ≥ 0.

Now by considering −f in the Inequality 1.1 above, we see that U(f,Q) ≤ U(f, P ).
For Part (ii), let P and Q be any pair of partitions on [a, b]. Notice that P ∪Q is also a partition on
[a, b] with P ⊆ P ∪Q and Q ⊆ P ∪Q. So, Part (i) implies that

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

The proof is complete. �
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The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on [a, b]. The upper integral (resp. lower integral) of f

over [a, b], write
∫ b
a f (resp.

∫ b
a f), is defined by

∫ b

a
f = inf{U(f, P ) : P is a partation on [a, b]}.

(resp.
∫ b

a
f = sup{L(f, P ) : P is a partation on [a, b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a, b]. With the notation as above, we
always have

(i)
∫ b

a
f ≤

∫ b

a
f.

(ii)
∫ b
a (−f) = −

∫ b
a f.

(iii)
∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g) ≤

∫ b

a
(f + g) ≤

∫ b

a
f +

∫ b

a
g.

Proof. Part (i) follows from Lemma 1.2 at once.
Part (ii) is clearly obtained by L(−f, P ) = −U(f, P ).

For proving the inequality
∫ b
a f +

∫ b
a g ≤

∫ b
a (f + g) ≤ first. It is clear that we have L(f, P ) +L(g, P ) ≤

L(f +g, P ) for all partitions P on [a, b]. Now let P1 and P2 be any partition on [a, b]. Then by Lemma
1.2, we have

L(f, P1) + L(g, P2) ≤ L(f, P1 ∪ P2) + L(g, P1 ∪ P2) ≤ L(f + g, P1 ∪ P2) ≤

∫ b

a
(f + g).

So, we have

(1.2)

∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g).

As before, we consider −f and −g in the Inequality 1.2, we get
∫ b
a (f + g) ≤

∫ b
a f +

∫ b
a g as desired. �

The following example shows the strict inequality in Proposition 1.4 (iii) may hold in general.

Example 1.5. Define a function f, g : [0, 1] → R by

f(x) =

{

1 if x ∈ [0, 1] ∩Q;

−1 otherwise.
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and

g(x) =

{

−1 if x ∈ [0, 1] ∩Q;

1 otherwise.

Then it is easy to see that f + g ≡ 0 and

∫ 1

0
f =

∫ 1

0
g = 1 and

∫ 1

0
f =

∫ 1

0
g = −1.

So, we have

−2 =

∫ b

a
f +

∫ b

a
g <

∫ b

a
(f + g) = 0 =

∫ b

a
(f + g) <

∫ b

a
f +

∫ b

a
g = 2.

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a, b]. We say that f is Riemann integrable over [a, b]

if
∫ a
b f =

∫ b
a f . In this case, we write

∫ b
a f for this common value and it is called the Riemann integral

of f over [a, b].
Also, write R[a, b] for the class of Riemann integrable functions on [a, b].

Proposition 1.7. With the notation as above, R[a, b] is a vector space over R and the integral
∫ b

a
: f ∈ R[a, b] 7→

∫ b

a
f ∈ R

defines a linear functional, that is, αf + βg ∈ R[a, b] and
∫ b
a (αf + βg) = α

∫ b
a f + β

∫ b
a g for all

f, g ∈ R[a, b] and α, β ∈ R.

Proof. Let f, g ∈ R[a, b] and α, β ∈ R. Notice that if α ≥ 0, it is clear that
∫ b
aαf = α

∫ b
a f = α

∫ b
a f =

α
∫ b
a f =

∫ b
aαf . Also, if α < 0, we have

∫ b
aαf = α

∫ b
a f = α

∫ b
a f = α

∫ b
a f =

∫ b
aαf . Therefore, we have

∫ b
a αf = α

∫ b
a f for all α ∈ R. For showing f + g ∈ R[a, b] and

∫ b
a (f + g) =

∫ b
a f +

∫ b
a g, these will

follows from Proposition 1.4 (iii) at once. The proof is finished. �

The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P : a = x0 < x1 < · · · < xn = b and 1 ≤ i ≤ n, put

ωi(f, P ) := sup{|f(x)− f(x′)| : x, x′ ∈ [xi−1, xi]}.

It is easy to see that U(f, P )− L(f, P ) =
∑n

i=1 ωi(f, P )∆xi.

Theorem 1.8. Let f be a bounded function on [a, b]. Then f ∈ R[a, b] if and only if for all ε > 0,
there is a partition P : a = x0 < · · · < xn = b on [a, b] such that

(1.3) 0 ≤ U(f, P )− L(f, P ) =

n
∑

i=1

ωi(f, P )∆xi < ε.
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Proof. Suppose that f ∈ R[a, b]. Let ε > 0. Then by the definition of the upper integral and lower

integral of f , we can find the partitions P and Q such that U(f, P ) <
∫ b
a f + ε and

∫ b
a f − ε < L(f,Q).

By considering the partition P ∪Q, we see that
∫ b

a
f − ε < L(f,Q) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f, P ) <

∫ b

a
f + ε.

Since
∫ b
a f =

∫ b
a f =

∫ b
a f , we have 0 ≤ U(f, P ∪Q) − L(f, P ∪Q) < 2ε. So, the partition P ∪Q is as

desired.
Conversely, let ε > 0, assume that the Inequality 1.3 above holds for some partition P . Notice that
we have

L(f, P ) ≤

∫ b

a
f ≤

∫ b

a
f ≤ U(f, P ).

So, we have 0 ≤
∫ b
a f −

∫ b
a f < ε for all ε > 0. The proof is finished. �

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a, b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 1.10. Let f : [0, 1] → R be the function defined by

f(x) =

{

1
p if x = q

p , where p, q are relatively prime positive integers;

0 otherwise.

Then f ∈ R[0, 1].
(Notice that the set of all discontinuous points of f , say D, is just the set of all (0, 1] ∩Q. Since the
set (0, 1] ∩ Q is countable, we can write (0, 1] ∩ Q = {z1, z2, ....}. So, if we let m(D) be the “size′′ of
the set D, then m(D) = m(

⋃∞
i=1{zi}) =

∑∞
i=1 m({zi}) = 0, in here, you may think that the size of

each set {zi} is 0. )

Proof. Let ε > 0. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

U(f, P )− L(f, P ) < ε.

Notice that for x ∈ [0, 1] such that f(x) ≥ ε if and only if x = q/p for a pair of relatively prime positive
integers p, q with 1

p ≥ ε. Since 1 ≤ q ≤ p, there are only finitely many pairs of relatively prime positive

integers p and q such that f( qp) ≥ ε. So, if we let S := {x ∈ [0, 1] : f(x) ≥ ε}, then S is a finite subset

of [0, 1]. Let L be the number of the elements in S. Then, for any partition P : a = x0 < · · · < xn = 1,
we have

n
∑

i=1

ωi(f, P )∆xi = (
∑

i:[xi−1,xi]∩S=∅

+
∑

i:[xi−1,xi]∩S 6=∅

) ωi(f, P )∆xi.

Notice that if [xi−1, xi] ∩ S = ∅, then we have ωi(f, P ) ≤ ε and thus,
∑

i:[xi−1,xi]∩S=∅

ωi(f, P )∆xi ≤ ε
∑

i:[xi−1,xi]∩S=∅

∆xi ≤ ε(1− 0).

On the other hand, since there are at most 2L sub-intervals [xi−1, xi] such that [xi−1, xi] ∩ S 6= ∅ and
ωi(f, P ) ≤ 1 for all i = 1, ..., n, so, we have

∑

i:[xi−1,xi]∩S 6=∅

ωi(f, P )∆xi ≤ 1 ·
∑

i:[xi−1,xi]∩S 6=∅

∆xi ≤ 2L‖P‖.
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We can now conclude that for any partition P , we have
n
∑

i=1

ωi(f, P )∆xi ≤ ε+ 2L‖P‖.

So, if we take a partition P with ‖P‖ < ε/(2L), then we have
∑n

i=1 ωi(f, P )∆xi ≤ 2ε.
The proof is finished. �

Proposition 1.11. Let f be a function defined on [a, b]. If f is either monotone or continuous on
[a, b], then f ∈ R[a, b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = x0 < · · · < xn = b, we have ωi(f, P ) = f(xi) − f(xi−1). So, if
‖P‖ < ε, we have
n
∑

i=1

ωi(f, P )∆xi =

n
∑

i=1

(f(xi)−f(xi−1))∆xi < ‖P‖
n
∑

i=1

(f(xi)−f(xi−1)) = ‖P‖(f(b)−f(a)) < ε(f(b)−f(a)).

Therefore, f ∈ R[a, b] if f is monotone.
Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any ε > 0,
there is δ > 0 such that |f(x)−f(x′)| < ε as x, x′ ∈ [a, b] with |x−x′| < δ. So, if we choose a partition
P with ‖P‖ < δ, then ωi(f, P ) < ε for all i. This implies that

n
∑

i=1

ωi(f, P )∆xi ≤ ε

n
∑

i=1

∆xi = ε(b− a).

The proof is complete. �

Proposition 1.12. We have the following assertions.

(i) If f, g ∈ R[a, b] with f ≤ g, then
∫ b
a f ≤

∫ b
a g.

(ii) If f ∈ R[a, b], then the absolute valued function |f | ∈ R[a, b]. In this case, we have |
∫ b
a f | ≤

∫ b
a |f |.

Proof. For Part (i), it is clear that we have the inequality U(f, P ) ≤ U(g, P ) for any partition P . So,

we have
∫ b
a f =

∫ b
a f ≤

∫ b
a g =

∫ b
a g.

For Part (ii), the integrability of |f | follows immediately from Theorem 1.8 and the simple inequality
||f |(x′) − |f |(x′′)| ≤ |f(x′) − f(x′′)| for all x′, x′′ ∈ [a, b]. Thus, we have U(|f |, P ) − L(|f |, P ) ≤
U(f, P )− L(f, P ) for any partition P on [a, b].

Finally, since we have −f ≤ |f | ≤ f , by Part (i), we have |
∫ b
a f | ≤

∫ b
a |f | at once. �

Proposition 1.13. Let a < c < b. We have f ∈ R[a, b] if and only if the restrictions f |[a,c] ∈ R[a, c]
and f |[c,b] ∈ R[c, b]. In this case we have

(1.4)

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proof. Let f1 := f |[a,c] and f2 := f |[c,b].
It is clear that we always have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(P, f)− L(f, P )

for any partition P1 on [a, c] and P2 on [c, b] with P = P1 ∪ P2.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f ∈ R[a, b], for any ε > 0, there is a partition Q on [a, b]
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such that U(f,Q)− L(f,Q) < ε by Theorem 1.8. Notice that there are partitions P1 and P2 on [a, c]
and [c, b] respectively such that P := Q ∪ {c} = P1 ∪ P2. Thus, we have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(f, P )− L(f, P ) ≤ U(f,Q)− L(f,Q) < ε.

So, we have f1 ∈ R[a, c] and f2 ∈ R[c, b].
It remains to show the Equation 1.4 above. Notice that for any partition P1 on [a, c] and P2 on [c, b],
we have

L(f1, P1) + L(f2, P2) = L(f, P1 ∪ P2) ≤

∫ b

a
f =

∫ b

a
f.

So, we have
∫ c
a f +

∫ b
c f ≤

∫ b
a f . Then the inverse inequality can be obtained at once by considering

the function −f . Then the resulted is obtained by using Theorem 1.8. �

Proposition 1.14. Let f and g be Riemann integrable functions defined ion [a, b]. Then the pointwise
product function f · g ∈ R[a, b].

Proof. We first show that the square function f2 is Riemann integrable. In fact, if we let M =
sup{|f(x)| : x ∈ [a, b]}, then we have ωk(f

2, P ) ≤ 2Mωk(f, P ) for any partition P : a = x0 < · · · <
an = b because we always have |f2(x) − f2(x′)| ≤ 2M |f(x) − f(x′)| for all x, x′ ∈ [a, b]. Then by
Theorem 1.8, the square function f2 ∈ R[a, b].
This, together with the identity f · g = 1

2((f + g)2 − f2 − g2). The result follows. �

Remark 1.15. In the proof of Proposition 1.14, we have shown that if f ∈ R[a, b], then so is its
square function f2. However, the converse does not hold. For example, if we consider f(x) = 1 for
x ∈ Q ∩ [0, 1] and f(x) = −1 for x ∈ Qc ∩ [0, 1], then f /∈ R[0, 1] but f2 ≡ 1 on [0, 1].

Proposition 1.16. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on [a, b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point ξ ∈ (a, b) such that

(1.5)

∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx.

Proof. By the continuity of f on [a, b], there exist two points x1 and x2 in [a, b] such that

f(x1) = m := min f(x); and f(x2) = M := max f(x).

We may assume that a ≤ x1 < x2 ≤ b. From this, since g ≤ 0, we have

mg(x) ≤ f(x)g(x) ≤ Mg(x)

for all x ∈ [a, b]. From this and Proposition 1.14 above, we have

m

∫ b

a
g ≤

∫ b

a
fg ≤ M

∫ b

a
g.

So, if
∫ b
a g = 0, then the result follows at once.

We may now suppose that
∫ b
a g > 0. The above inequality shows that

m = f(x1) ≤

∫ b
a fg
∫ b
a g

≤ f(x2) = M.

Therefore, there is a point ξ ∈ [x1, x2] ⊆ [a, b] so that the Equation 1.5 holds by using the Intermediate
Value Theorem for the function f . Thus, it remains to show that such element ξ can be chosen in
(a, b).
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Let a ≤ x1 < x2 ≤ b be as above.
If x1 and x2 can be found so that a < x1 < x2 < b, then the result is proved immediately since
ξ ∈ [x1, x2] ⊂ (a, b) in this case.
Now suppose that x1 or x2 does not exist in (a, b), i.e., m = f(a) < f(x) for all x ∈ (a, b] or
f(x) < f(b) = M for all x ∈ [a, b).

Claim 1: If f(a) < f(x) for all x ∈ (a, b], then
∫ b
a fg > f(a)

∫ b
a g and hence, ξ ∈ (a, x2] ⊆ (a, b].

For showing Claim1, put h(x) := f(x)− f(a) for x ∈ [a, b]. Then h is continuous on [a, b] and h > 0

on (a, b]. This implies that
∫ d
c h > 0 for any subinterval [c, d] ⊆ [a, b]. (Why?)

On the other hand, since
∫ b

a
g =

∫ b
a g > 0, there is a partition P : a = x0 < · · · < xn = b so that

L(g, P ) > 0. This implies that mk(g, P ) > 0 for some sub-interval [xk−1, xk]. Therefore, we have
∫ b

a
hg ≥

∫ xk

xk−1

hg ≥ mk(g, P )

∫ xk

xk−1

h > 0.

Hence, we have
∫ b
a fg > f(a)

∫ b
a g. Claim 1 follows.

Similarly, one can show that if f(x) < f(b) = M for all x ∈ [a, b), then we have
∫ b
a fg < f(b)

∫ b
a g.

This, together with Claim 1 give us that such ξ can be found in (a, b). The proof is finished. �

2. Fundamental Theorem of Calculus

Now if f ∈ R[a, b], then by Proposition 1.13, we can define a function F : [a, b] → R by

(2.1) F (c) =

{

0 if c = a
∫ c
a f if a < c ≤ b.

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that
f ∈ R[a, b], we have the following assertion.

(i) If there is a continuous function H on [a, b] which is differentiable on (a, b) with H ′ = f ,

then
∫ b
a f = H(b) − H(a). In this case, H is called an indefinite integral of f . (note: if

H1 and H2 both are the indefinite integrals of f , then by the Mean Value Theorem, we have
H2 = H1 + constant).

(ii) The function F defined as in Eq. 2.1 above is continuous on [a, b]. Furthermore, if f is
continuous on [a, b], then F ′ exists on (a, b) and F ′ = f on (a, b).

Proof. For Part (i), notice that for any partition P : a = x0 < · · · < xn = b, then by the Mean Value
Theorem, for each [xi−1, xi], there is ξ ∈ (xi−1, xi) such that F (xi)− F (xi−1) = F ′(ξ)∆xi = f(ξ)∆xi.
So, we have

L(f, P ) ≤
∑

f(ξ)∆xi =
∑

F (xi)− F (xi−1) = F (b)− F (a) ≤ U(f, P )

for all partitions P on [a, b]. This gives
∫ b

a
f =

∫ b

a
f ≤ F (b)− F (a) ≤

∫ b

a
f =

∫ b

a
f

as desired.
For showing the continuity of F in Part (ii), let a < c < x < b. If |f | ≤ M on [a, b], then we have
|F (x)−F (c)| = |

∫ x
c f | ≤ M(x− c). So, limx→c+ F (x) = F (c). Similarly, we also have limx→c− F (x) =

F (c). Thus F is continuous on [a, b].
Now assume that f is continuous on [a, b]. Notice that for any t > 0 with a < c < c+ t < b, we have

inf
x∈[c,c+t]

f(x) ≤
1

t
(F (c + t)− F (c)) =

1

t

∫ c+t

c
f ≤ sup

x∈[c,c+t]
f(x).
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Since f is continuous at c, we see that lim
t→0+

1

t
(F (c+t)−F (c)) = f(c). Similarly, we have lim

t→0−

1

t
(F (c+

t)− F (c)) = f(c). So, we have F ′(c) = f(c) as desired. The proof is finished. �

3. Riemann Sums and Change of variables formula

Definition 3.1. For each bounded function f on [a, b]. Call R(f, P, {ξi}) :=
∑

f(ξi)∆xi, where
ξi ∈ [xi−1, xi], the Riemann sum of f over [a, b].
We say that the Riemann sum R(f, P, {ξi}) converges to a number A as ‖P‖ → 0, write A =
lim

‖P‖→0
R(f, P, {ξi}), if for any ε > 0, there is δ > 0 such that

|A−R(f, P, {ξi})| < ε

whenever ‖P‖ < δ and for any ξi ∈ [xi−1, xi].

Proposition 3.2. Let f be a function defined on [a, b]. If the limit lim
‖P‖→0

R(f, P, {ξi}) = A exists,

then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = x0 <
· · · < xn = b such that |

∑n
k=1 f(ξk)∆xk| < 1 + |A| for any ξk ∈ [xk−1, xk]. Since f is unbounded, we

may assume that f is unbounded on [a, x1]. In particular, we choose ξk = xk for k = 2, ..., n. Also, we
can choose ξ1 ∈ [a, x1] such that

|f(ξ1)|∆x1 > 1 + |A|+ |
n
∑

k=2

f(xk)∆xk|.

It leads to a contradiction because we have 1 + |A| > |f(ξ1)|∆x1 − |
∑n

k=2 f(xk)∆xk|. The proof is
finished. �

Lemma 3.3. f ∈ R[a, b] if and only if for any ε > 0, there is δ > 0 such that U(f, P )− L(f, P ) < ε
whenever ‖P‖ < δ.

Proof. The converse follows from Theorem 1.8.
Assume that f is integrable over [a, b]. Let ε > 0. Then there is a partition Q : a = y0 < ... < yl = b on
[a, b] such that U(f,Q)− L(f,Q) < ε. Now take 0 < δ < ε/l. Suppose that P : a = x0 < ... < xn = b
with ‖P‖ < δ. Then we have

U(f, P )− L(f, P ) = I + II

where

I =
∑

i:Q∩[xi−1,xi]=∅

ωi(f, P )∆xi;

and

II =
∑

i:Q∩[xi−1,xi] 6=∅

ωi(f, P )∆xi

Notice that we have

I ≤ U(f,Q)− L(f,Q) < ε

and

II ≤ (M −m)
∑

i:Q∩[xi−1,xi] 6=∅

∆xi ≤ (M −m) · 2l ·
ε

l
= 2(M −m)ε.

The proof is finished. �
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Theorem 3.4. f ∈ R[a, b] if and only if the Riemann sum R(f, P, {ξi}) is convergent. In this case,

R(f, P, {ξi}) converges to

∫ b

a
f(x)dx as ‖P‖ → 0.

Proof. For the proof (⇒) : we first note that we always have

L(f, P ) ≤ R(f, P, {ξi}) ≤ U(f, P )

and

L(f, P ) ≤

∫ b

a
f(x)dx ≤ U(f, P )

for any partition P and ξi ∈ [xi−1, xi].
Now let ε > 0. Lemma 3.3 gives δ > 0 such that U(f, P )− L(f, P ) < ε as ‖P‖ < δ. Then we have

|

∫ b

a
f(x)dx−R(f, P, {ξi})| < ε

as ‖P‖ < δ and ξi ∈ [xi−1, xi]. The necessary part is proved and R(f, P, {ξi}) converges to

∫ b

a
f(x)dx.

For (⇐) : assume that there is a number A such that for any ε > 0, there is δ > 0, we have

A− ε < R(f, P, {ξi}) < A+ ε

for any partition P with ‖P‖ < δ and ξi ∈ [xi−1, xi].
Notice that f is automatically bounded in this case by Proposition 3.2.
Now fix a partition P with ‖P‖ < δ. Then for each [xi−1, xi], choose ξi ∈ [xi−1, xi] such that
Mi(f, P )− ε ≤ f(ξi). This implies that we have

U(f, P )− ε(b− a) ≤ R(f, P, {ξi}) < A+ ε.

So we have shown that for any ε > 0, there is a partition P such that

(3.1)

∫ b

a
f(x)dx ≤ U(f, P ) ≤ A+ ε(1 + b− a).

By considering −f , note that the Riemann sum of −f will converge to −A. The inequality 3.1 will
imply that for any ε > 0, there is a partition P such that

A− ε(1 + b− a) ≤

∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx ≤ A+ ε(1 + b− a).

The proof is finished. �

Theorem 3.5. Let f ∈ R[c, d] and let φ : [a, b] −→ [c, d] be a strictly increasing C1 function with
f(a) = c and f(b) = d.
Then f ◦ φ ∈ R[a, b], moreover, we have

∫ d

c
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt.

Proof. Let A =
∫ d
c f(x)dx. By Theorem 3.4, we need to show that for all ε > 0, there is δ > 0 such

that

|A−
∑

f(φ(ξk))φ
′(ξk)△tk| < ε

for all ξk ∈ [tk−1, tk] whenever Q : a = t0 < ... < tm = b with ‖Q‖ < δ.
Now let ε > 0. Then by Lemma 3.3 and Theorem 3.4, there is δ1 > 0 such that

(3.2) |A−
∑

f(ηk)△xk| < ε
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and

(3.3)
∑

ωk(f, P )△xk < ε

for all ηk ∈ [xk−1, xk] whenever P : c = x0 < ... < xm = d with ‖P‖ < δ1.
Now put x = φ(t) for t ∈ [a, b].
Now since φ and φ′ are continuous on [a, b], there is δ > 0 such that |φ(t) − φ(t′)| < δ1 and |φ′(t) −
φ′(t′)| < ε for all t, t′ in[a, b] with |t− t′| < δ.
Now let Q : a = t0 < ... < tm = b with ‖Q‖ < δ. If we put xk = φ(tk), then P : c = x0 < .... < xm = d
is a partition on [c, d] with ‖P‖ < δ1 because φ is strictly increasing.
Note that the Mean Value Theorem implies that for each [tk−1, tk], there is ξ∗k ∈ (tk−1, tk) such that

△xk = φ(tk)− φ(tk−1) = φ′(ξ∗k)∆tk.

This yields that

(3.4) |△xk − φ′(ξk)△tk| < ε∆tk

for any ξk ∈ [tk−1, tk] for all k = 1, ...,m because of the choice of δ.
Now for any ξk ∈ [tk−1, tk], we have

(3.5)

|A−
∑

f(φ(ξk))φ
′(ξk)△tk| ≤ |A−

∑

f(φ(ξ∗k))φ
′(ξ∗k)△tk|

+ |
∑

f(φ(ξ∗k))φ
′(ξ∗k)△tk −

∑

f(φ(ξ∗k))φ
′(ξk)△tk|

+ |
∑

f(φ(ξ∗k))φ
′(ξk)△tk −

∑

f(φ(ξk))φ
′(ξk)△tk|

Notice that inequality 3.2 implies that

|A−
∑

f(φ(ξ∗k))φ
′(ξ∗k)△tk| = |A−

∑

f(φ(ξ∗k))△xk| < ε.

Also, since we have |φ′(ξ∗k)− φ′(ξk)| < ε for all k = 1, ..,m, we have

|
∑

f(φ(ξ∗k))φ
′(ξ∗k)△tk −

∑

f(φ(ξ∗k))φ
′(ξk)△tk| ≤ M(b− a)ε

where |f(x)| ≤ M for all x ∈ [c, d].
On the other hand, by using inequality 3.4 we have

|φ′(ξk)△tk| ≤ △xk + ε△tk

for all k. This, together with inequality 3.3 imply that

|
∑

f(φ(ξ∗k))φ
′(ξk)△tk −

∑

f(φ(ξk))φ
′(ξk)△tk|

≤
∑

ωk(f, P )|φ′(ξk)△tk| (∵ φ(ξ∗k), φ(ξk) ∈ [xk−1, xk])

≤
∑

ωk(f, P )(△xk + ε△tk)

≤ ε+ 2M(b− a)ε.

Finally by inequality 3.5, we have

|A−
∑

f(φ(ξk))φ
′(ξk)△tk| ≤ ε+M(b− a)ε+ ε+ 2M(b− a)ε.

The proof is finished. �
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4. Improper Riemann Integrals

Definition 4.1. Let −∞ < a < b < ∞.

(i) Let f be a function defined on [a,∞). Assume that the restriction f |[a,T ] is integrable over

[a, T ] for all T > a. Put

∫ ∞

a
f := lim

T→∞

∫ T

a
f if this limit exists.

Similarly, we can define
∫ b
−∞ f if f is defined on (−∞, b].

(ii) If f is defined on (a, b] and f |[c,b] ∈ R[c, b] for all a < c < b. Put

∫ b

a
f := lim

c→a+

∫ b

c
f if it

exists.
Similarly, we can define

∫ b
a f if f is defined on [a, b).

(iii) As f is defined on R, if
∫∞
0 f and

∫ 0
−∞ f both exist, then we put

∫∞
−∞ f =

∫ 0
−∞ f +

∫∞
0 f .

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Example 4.2. Define ( formally) an improper integral Γ(s) ( called the Γ-function) as follows:

Γ(s) :=

∫ ∞

0
xs−1e−xdx

for s ∈ R. Then Γ(s) is convergent if and only if s > 0.

Proof. Put I(s) :=
∫ 1
0 xs−1e−xdx and II(s) :=

∫∞
1 xs−1e−xdx. We first claim that the integral II(s)

is convergent for all s ∈ R.
In fact, if we fix s ∈ R, then we have

lim
x→∞

xs−1

ex/2
= 0.

So there is M > 1 such that xs−1

ex/2
≤ 1 for all x ≥ M . Thus we have

0 ≤

∫ ∞

M
xs−1e−xdx ≤

∫ ∞

M
e−x/2dx < ∞.

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < η < 1, we have

0 ≤

∫ 1

η
xs−1e−xdx ≤

∫ 1

η
xs−1dx =

{

1
s (1− ηs) if s− 1 6= −1;

− ln η otherwise .

Thus the integral I(s) = lim
η→0+

∫ 1

η
xs−1e−xdx is convergent if s > 0.

Conversely, we also have
∫ 1

η
xs−1e−xdx ≥ e−1

∫ 1

η
xs−1dx =

{

e−1

s (1− ηs) if s− 1 6= −1;

−e−1 ln η otherwise .

So if s ≤ 0, then
∫ 1
η xs−1e−xdx is divergent as η → 0+. The result follows. �

5. Uniform Convergence of a Sequence of Differentiable Functions

Proposition 5.1. Let fn : (a, b) −→ R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(x) on (a, b);
(ii) : each fn is a C1 function on (a, b);
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(iii) : f ′
n → g uniformly on (a, b).

Then f is a C1-function on (a, b) with f ′ = g.

Proof. Fix c ∈ (a, b). Then for each x with c < x < b (similarly, we can prove it in the same way as
a < x < c), the Fundamental Theorem of Calculus implies that

fn(x) =

∫ x

c
f ′(t)dt+ fn(c).

Since f ′
n → g uniformly on (a, b), we see that

∫ x

c
f ′
n(t)dt −→

∫ x

c
g(t)dt.

This gives

(5.1) f(x) =

∫ x

c
g(t)dt+ f(c).

for all x ∈ (c, b). Similarly, we have f(x) =
∫ x
c g(t)dt + f(c) for all x ∈ (a, b).

On the other hand, g is continuous on (a, b) since each f ′
n is continuous and f ′

n → g uniformly on
(a, b). Equation 5.1 will tell us that f ′ exists and f ′ = g on (a, b). The proof is finished. �

Proposition 5.2. Let (fn) be a sequence of differentiable functions defined on (a, b). Assume that

(i): there is a point c ∈ (a, b) such that lim fn(c) exists;
(ii): f ′

n converges uniformly to a function g on (a, b).

Then

(a): fn converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and f ′ = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ε > 0. Then by the assumptions (i) and (ii), there is a positive integer N such that

|fm(c)− fn(c)| < ε and |f ′
m(x)− f ′

n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b). Now fix c < x < b and m,n ≥ N . To apply the Mean Value
Theorem for fm − fn on (c, x), then there is a point ξ between c and x such that

(5.2) fm(x)− fn(x) = fm(c)− fn(c) + (f ′
m(ξ)− f ′

n(ξ))(x − c).

This implies that

|fm(x)− fn(x)| ≤ |fm(c)− fn(c)| + |f ′
m(ξ)− f ′

n(ξ)||x − c| < ε+ (b− a)ε

for all m,n ≥ N and for all x ∈ (c, b). Similarly, when x ∈ (a, c), we also have

|fm(x)− fn(x)| < ε+ (b− a)ε.

So Part (a) follows.
Let f be the uniform limit of (fn) on (a, b)
For Part (b), we fix u ∈ (a, b). We are going to show

lim
x→u

f(x)− f(u)

x− u
= g(u).

Let ε > 0. Since (f ′
n) is uniformly convergent on (a, b), there is N ∈ N such that

(5.3) |f ′
m(x)− f ′

n(x)| < ε
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for all m,n ≥ N and for all x ∈ (a, b)
Note that for all m ≥ N and x ∈ (a, b)\{u}, applying the Mean value Theorem for fm− fN as before,
we have

fm(x)− fN (x)

x− u
=

fm(u)− fN (u)

x− u
+ (f ′

m(ξ)− f ′
N(ξ))

for some ξ between u and x.
So Eq.5.3 implies that

(5.4) |
fm(x)− fm(u)

x− u
−

fN (x)− fN(u)

x− u
| ≤ ε

for all m ≥ N and for all x ∈ (a, b) with x 6= u.
Taking m → ∞ in Eq.5.4, we have

|
f(x)− f(u)

x− u
−

fN(x)− fN (u)

x− u
| ≤ ε.

Hence we have

|
f(x)− f(u)

x− u
− f ′

N (u)| ≤ |
f(x)− f(u)

x− c
−

fN(x)− fN (u)

x− u
|+ |

fN (x)− fN(u)

x− u
− f ′

N (u)|

≤ ε+ |
fN (x)− fN(u)

x− u
− f ′

N (u)|.

So if we can take 0 < δ such that |fN (x)−fN (u)
x−u − f ′

N(u)| < ε for 0 < |x− u| < δ, then we have

(5.5) |
f(x)− f(u)

x− u
− f ′

N (u)| ≤ 2ε

for 0 < |x − u| < δ. On the other hand, by the choice of N , we have |f ′
m(y) − f ′

N(y)| < ε for all
y ∈ (a, b) and m ≥ N . So we have |g(u)− f ′

N (u)| ≤ ε. This together with Eq.5.5 give

|
f(x)− f(u)

x− u
− g(u)| ≤ 3ε

as 0 < |x− u| < δ, that is we have

lim
x→u

f(x)− f(u)

x− u
= g(u).

The proof is finished. �

Remark 5.3. The uniform convergence assumption of (f ′
n) in Propositions 5.1 and 5.2 is essential.

Example 5.4. Let fn(x) :=
x

1+n2x2 for x ∈ (−1, 1). Then we have

g(x) := lim
n

f ′
n(x) := lim

n

1− n2x2

(1 + n2x2)2
=

{

0 if x 6= 0;

1 if x = 0.

On the other hand, fn → 0 uniformly on (−1, 1). In fact, if f ′
n(1/n) = 0 for all n = 1, 2, .., then fn

attains the maximal value fn(1/n) =
1
2n at x = 1/n for each n = 1, ... and hence, fn → 0 uniformly

on (−1, 1).
So Propositions 5.1 and 5.2 does not hold. Note that (f ′

n) does not converge uniformly to g on (−1, 1).
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6. Dini’s Theorem

Recall that a subset A of R is said to be compact if for any family open intervals cover {Ji}i∈I of
A, that is, each Ji is and open interval and A ⊆

⋃

i∈I Ji, we can find finitely many Ji1 , ..., JiN such
that A ⊆ Ji1 ∪ · · · ∪ JiN .

Let us recall the following important result.

Theorem 6.1. A subset A of R is compact if and only if any sequence (xn) in A has a convergent
subsequence (xnk

) such that limk xnk
∈ A. In particular, every closed and bounded interval is compact

by using the Bolzano-Weierstrass Theorem.

Proposition 6.2. (Dini’s Theorem): Let A be a compact subset of R and fn : A → R be a sequence
of continuous functions defined on A. Suppose that

(i) for each x ∈ A, we have fn(x) ≤ fn+1(x) for all n = 1, 2...;
(ii) the pointwise limit f(x) := limn fn(x) exists for all x ∈ A;
(iii) f is continuous on A.

Then fn converges to f uniformly on A.

Proof. Let gn := f − fn defined on A. Then each gn is continuous and gn(x) ↓ 0 pointwise on A. It
suffices to show that gn converges to 0 uniformly on A.
Method I: Suppose not. Then there is ε > 0 such that for all positive integer N , we have

(6.1) gn(xn) ≥ ε.

for some n ≥ N and some xn ∈ A. From this, by passing to a subsequence we may assume that
gn(xn) ≥ ε for all n = 1, 2, .... Then by using the compactness of A, Theorem 6.1 gives a convergent
subsequence (xnk

) of (xn) in A. Let z := lim
k

xnk
∈ A. Since gnk

(z) ↓ 0 as k → ∞. So, there is a

positive integer K such that 0 ≤ gnK
(z) < ε/2. Since gnK

is continuous at z and lim
i

xni = z, we have

lim
i
gnK

(xni) = gnK
(z). So, we can choose i large enough such that i > K

gni(xni) ≤ gnK
(xni) < ε/2

because gm(xni) ↓ 0 as m → ∞. This contradicts to the Inequality 6.1.
Method II: Let ε > 0. Fix x ∈ A. Since gn(x) ↓ 0, there is N(x) ∈ N such that 0 ≤ gn(x) < ε for
all n ≥ N(x). Since gN(x) is continuous, there is δ(x) > 0 such that gN(x)(y) < ε for all y ∈ A with
|x−y| < δ(x). If we put Jx := (x− δ(x), x+ δ(x)), then A ⊆

⋃

x∈A Jx. Then by the compactness of A,
there are finitely many x1, ..., xm in A such that A ⊆ Jx1

∪· · ·∪Jxm. Put N := max(N(x1), ..., N(xm)).
Now if y ∈ A, then y ∈ J(xi) for some 1 ≤ i ≤ m. This implies that

gn(y) ≤ gN(xi)(y) < ε

for all n ≥ N ≥ N(xi). �

7. Absolutely convergent series

Throughout this section, let (an) be a sequence of complex numbers.

Definition 7.1. We say that a series

∞
∑

n=1

an is absolutely convergent if

∞
∑

n=1

|an| < ∞.

Also a convergent series

∞
∑

n=1

an is said to be conditionally convergent if it is not absolute convergent.
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Example 7.2. Important Example : The series

∞
∑

n=1

(−1)n+1

nα
is conditionally convergent when

0 < α ≤ 1.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f : [1,∞) −→ R given by

f(x) =
(−1)n+1

nα
if n ≤ x < n+ 1.

If α = 1/2, then

∫ ∞

1
f(x)dx is convergent but it is neither absolutely convergent nor square integrable.

Notation 7.3. Let σ : {1, 2...} −→ {1, 2....} be a bijection. A formal series
∞
∑

n=1

aσ(n) is called an

rearrangement of

∞
∑

n=1

an.

Example 7.4. In this example, we are going to show that there is an rearrangement of the series
∞
∑

i=1

(−1)i+1

i
is divergent although the original series is convergent. In fact, it is conditionally conver-

gent.
We first notice that the series

∑

i
1

2i−1 diverges to infinity. Thus for each M > 0, there is a positive
integer N such that

n
∑

i=1

1

2i− 1
≥ M · · · · · · · · · (∗)

for all n ≥ N . Then there is N1 ∈ N such that

N1
∑

i=1

1

2i− 1
−

1

2
> 1.

By using (∗) again, there is a positive integer N2 with N1 < N2 such that

N1
∑

i=1

1

2i− 1
−

1

2
+

∑

N1<i≤N2

1

2i− 1
−

1

4
> 2.

To repeat the same procedure, we can find a positive integers subsequence (Nk) such that

N1
∑

i=1

1

2i− 1
−

1

2
+

∑

N1<i≤N2

1

2i− 1
−

1

4
+ · · · · · · · · · −

∑

Nk−1<i≤Nk

1

2i− 1
−

1

2k
> k

for all positive integers k. So if we let an = (−1)n+1

n , then one can find a bijection σ : N → N such that

the series

∞
∑

i=1

aσ(i) is an rearrangement of the series

∞
∑

i=1

(−1)i+1

i
and diverges to infinity. The proof

is finished.

Theorem 7.5. Let

∞
∑

n=1

an be an absolutely convergent series. Then for any rearrangement

∞
∑

n=1

aσ(n)

is also absolutely convergent. Moreover, we have

∞
∑

n=1

an =

∞
∑

n=1

aσ(n).
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Proof. Let σ : {1, 2...} −→ {1, 2...} be a bijection as before.
We first claim that

∑

n aσ(n) is also absolutely convergent.
Let ε > 0. Since

∑

n |an| < ∞, there is a positive integer N such that

|aN+1|+ · · · · · · · · · + |aN+p| < ε · · · · · · · · · (∗)

for all p = 1, 2.... Notice that since σ is a bijection, we can find a positive integer M such that
M > max{j : 1 ≤ σ(j) ≤ N}. Then σ(i) ≥ N if i ≥ M . This together with (∗) imply that if i ≥ M
and p ∈ N, we have

|aσ(i+1)|+ · · · · · · · · · |aσ(i+p)| < ε.

Thus the series
∑

n aσ(n) is absolutely convergent by the Cauchy criteria.
Finally we claim that

∑

n an =
∑

n aσ(n). Put l =
∑

n an and l′ =
∑

n aσ(n). Now let ε > 0. Then
there is N ∈ N such that

|l −
N
∑

n=1

an| < ε and |aN+1|+ · · · · · · + |aN+p| < ε · · · · · · · · · (∗∗)

for all p ∈ N. Now choose a positive integer M large enough so that {1, ..., N} ⊆ {σ(1), ..., σ(M)} and

|l′ −
M
∑

i=1

aσ(i)| < ε. Notice that since we have {1, ..., N} ⊆ {σ(1), ..., σ(M)}, the condition (∗∗) gives

|
N
∑

n=1

an −
M
∑

i=1

aσ(i)| ≤
∑

N<i<∞

|ai| ≤ ε.

We can now conclude that

|l − l′| ≤ |l −
N
∑

n=1

an|+ |
N
∑

n=1

an −
M
∑

i=1

aσ(i)|+ |
M
∑

i=1

aσ(i) − l′| ≤ 3ε.

The proof is complete. �

8. Power series

Throughout this section, let

f(x) =

∞
∑

i=0

aix
i · · · · · · · · · · · · (∗)

denote a formal power series, where ai ∈ R.

Lemma 8.1. Suppose that there is c ∈ R with c 6= 0 such that f(c) is convergent. Then

(i) : f(x) is absolutely convergent for all x with |x| < |c|.
(ii) : f converges uniformly on [−η, η] for any 0 < η < |c|.

Proof. For Part (i), note that since f(c) is convergent, then lim anc
n = 0. So there is a positive integer

N such that |anc
n| ≤ 1 for all n ≥ N . Now if we fix |x| < |c|, then |x/c| < 1. Therefore, we have

∞
∑

n=1

|an||x
n| ≤

N−1
∑

n=1

|an||x
n|+

∑

n≥N

|anc
n||x/c|n ≤

N−1
∑

n=1

|an||x
n|+

∑

n≥N

|x/c|n < ∞.

So Part (i) follows.
Now for Part (ii), if we fix 0 < η < |c| ,then |anx

n| ≤ |anη|
n for all n and for all x ∈ [−η, η]. On the

other hand, we have
∑

n |anη
n| < ∞ by Part (i). So f converges uniformly on [−η, η] by the M -test.

The proof is finished. �
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Remark 8.2. In Lemma 8.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [−c, c] in general.

For example, f(x) := 1 +

∞
∑

n=1

xn

n
. Then f(−1) is convergent but f(1) is divergent.

Definition 8.3. Call the set dom f := {x ∈ R : f(c) is convergent } the domain of convergence of f
for convenience. Let 0 ≤ r := sup{|c| : c ∈ dom f} ≤ ∞. Then r is called the radius of convergence
of f .

Remark 8.4. Notice that by Lemma 8.9, then the domain of convergence of f must be the interval
with the end points ±r if 0 < r < ∞.
When r = 0, then dom f = {0}.
Finally, if r = ∞, then dom f = R.

Example 8.5. If f(x) =
∑∞

n=0 n!x
n, then r = (0). In fact, notice that if we fix a non-zero number

x and consider limn |(n + 1)!xn+1|/|n!xn| = ∞, then by the ratio test f(x) must be divergent for any
x 6= 0. So r = 0 and dom f = (0).

Example 8.6. Let f(x) = 1 +
∑∞

n=1 x
n/nn. Notice that we have limn |x

n/nn|1/n = 0 for all x. So
the root test implies that f(x) is convergent for all x and then r = ∞ and dom f = R.

Example 8.7. Let f(x) = 1 +
∑∞

n=1 x
n/n. Then limn |x

n+1/(n + 1)| · |n/xn| = |x| for all x 6= 0.
So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(−1) is divergent. Therefore, we
have dom f = [−1, 1).

Example 8.8. Let f(x) =
∑

xn/n2. Then by using the same argument of Example 8.7, we have
r = 1. On the other hand, it is known that f(±1) both are convergent. So dom f = [−1, 1].

Lemma 8.9. With the notation as above, if r > 0, then f converges uniformly on (−η, η) for any
0 < η < r.

Proof. It follows from Lemma 8.1 at once. �

Remark 8.10. Note that the Example 8.7 shows us that f may not converge uniformly on (−r, r).
In fact let f be defined as in Example 8.7. Then f does not converge uniformly on (−1, 1). In fact, if
we let sn(x) =

∑∞
k=0 akx

k, then for any positive integer n and 0 < x < 1, we have

|s2n(x)− sn(x)| =
xn+1

n+ 1
+ · · · · · ·+

x2n

2n
≥

x2n

2
.

From this we see that for each n, we can find 0 < x < 1 such that |s2n(x)− sn(x)| >
1
4 . Thus f does

not converges uniformly on (−1, 1) by the Cauchy Theorem.

Proposition 8.11. With the notation as above, let ℓ = lim |an|
1/n or lim

|an+1|

|an|
provided it exists.

Then

r =











1
ℓ if 0 < ℓ < ∞;

0 if ℓ = ∞;

∞ if ℓ = 0.
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Proposition 8.12. With the notation as above if 0 < r ≤ ∞, then f ∈ C∞(−r, r). Moreover, the
k-derivatives f (k)(x) =

∑

n≥k akn(n− 1)(n − 2) · · · · · · (n− k + 1)xn−k for all x ∈ (−r, r).

Proof. Fix c ∈ (−r, r). By Lemma 8.9, one can choose 0 < η < r such that c ∈ (−η, η) and f converges
uniformly on (−η, η).

It needs to show that the k-derivatives f (k)(c) exists for all k ≥ 0. Consider the case k = 1 first.
If we consider the series

∑∞
n=0(anx

n)′ =
∑∞

n=1 nanx
n−1, then it also has the same radius r be-

cause limn |nan|
1/n = limn |an|

1/n. This implies that the series
∑∞

n=1 nanx
n−1 converges uniformly

on (−η, η). Therefore, the restriction f |(−η, η) is differentiable. In particular, f ′(c) exists and
f ′(c) =

∑∞
n=1 nanc

n−1.
So the result can be shown inductively on k. �

Proposition 8.13. With the notation as above, suppose that r > 0. Then we have
∫ x

0
f(t)dt =

∞
∑

n=0

∫ x

0
ant

ndt =

∞
∑

0

1

n+ 1
anx

n+1

for all x ∈ (−r, r).

Proof. Fix 0 < x < r. Then by Lemma 8.9 f converges uniformly on [0, x]. Since each term ant
n is

continuous, the result follows. �

Theorem 8.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(−r)) exists.
Then f is continuous at x = r (resp. x = −r), that is lim

x→r−
f(x) = f(r).

Proof. Note that by considering f(−x), it suffices to show that the case x = r holds.
Assume r = 1.
Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired.
Let ε > 0. Since f(1) is convergent, then there is a positive integer such that

|an+1 + · · · · · · · · · + an+p| < ε

for n ≥ N and for all p = 1, 2.... Note that for n ≥ N ; p = 1, 2... and x ∈ [0, 1], we have

(8.1)

sn+p(x)− sn(x) = an+1x
n+1 + an+2x

n+1 + an+3x
n+1 + · · · · · · · · ·+ an+px

n+1

+ an+2(x
n+2 − xn+1) + an+3(x

n+2 − xn+1) + · · · · · · · · ·+ an+p(x
n+2 − xn+1)

+ an+3(x
n+3 − xn+2) + · · · · · · · · ·+ an+p(x

n+3 − xn+2)

...

+ an+p(x
n+p − xn+p−1).

Since x ∈ [0, 1], |xn+k+1 − xn+k| = xn+k − xn+k+1. So the Eq.8.1 implies that

|sn+p(x)−sn(x)| ≤ ε(xn+1+(xn+1−xn+2)+(xn+2−xn+3)+· · ·+(xn+p−1−xn+p)) = ε(2xn+1−xn+p) ≤ 2ε.

So f converges uniformly on [0, 1] as desired.

Finally for the general case, we consider g(x) := f(rx) =
∑

n anr
nxn. Note that limn |anr

n|1/n = 1
and g(1) = f(r). Then by the case above,, we have shown that

f(r) = g(1) = lim
x→1−

g(x) = lim
x→r−

f(x).

The proof is finished. �
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Remark 8.15. In Remark 8.10, we have seen that f may not converges uniformly on (−r, r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(±r) both exist, then f converges
uniformly on [−r, r] in this case.

9. Real analytic functions

Proposition 9.1. Let f ∈ C∞(a, b) and c ∈ (a, b). Then for any x ∈ (a, b) \ {c} and for any n ∈ N,
there is ξ = ξ(x, n) between c and x such that

f(x) =

n
∑

k=0

f (k)(c)

k!
(x− c)k +

∫ x

c

f (n+1)(t)

n!
(x− t)ndt

Call

∞
∑

k=0

f (k)(c)

k!
(x− c)k (may not be convergent) the Taylor series of f at c.

Proof. It is easy to prove by induction on n and the integration by part. �

Definition 9.2. A real-valued function f defined on (a, b) is said to be real analytic if for each
c ∈ (a, b), one can find δ > 0 and a power series

∑∞
k=0 ak(x− c)k such that

f(x) =

∞
∑

k=0

ak(x− c)k · · · · · · · · · (∗)

for all x ∈ (c− δ, c + δ) ⊆ (a, b).

Remark 9.3.

(i) : Concerning about the definition of a real analytic function f , the expression (∗) above is
uniquely determined by f , that is, each coefficient ak’s is uniquely determined by f . In fact,
by Proposition 8.12, we have seen that f ∈ C∞(a, b) and

ak =
f (k)(c)

k!
· · · · · · · · · (∗∗)

for all k = 0, 1, 2, ....
(ii) : Although every real analytic function is C∞, the following example shows that the converse

does not hold.
Define a function f : R → R by

f(x) =

{

e−1/x2

if x 6= 0;

0 if x = 0.

One can directly check that f ∈ C∞(R) and f (k)(0) = 0 for all k = 0, 1, 2.... So if f is real
analytic, then there is δ > 0 such that ak = 0 for all k by the Eq.(∗∗) above and hence f(x) ≡ 0
for all x ∈ (−δ, δ). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C∞.

Proposition 9.4. Suppose that f(x) :=
∑∞

k=0 ak(x−c)k is convergent on some open interval I centered
at c, that is I = (c− r, c + r) for some r > 0. Then f is analytic on I.
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Proof. We first note that f ∈ C∞(I). By considering the translation x− c, we may assume that c = 0.
Now fix z ∈ I. Now choose δ > 0 such that (z − δ, z + δ) ⊆ I. We are going to show that

f(x) =
∞
∑

j=0

f (j)(z)

j!
(x− z)j .

for all x ∈ (z − δ, z + δ).
Notice that f(x) is absolutely convergent on I. This implies that

f(x) =
∞
∑

k=0

ak(x− z + z)k

=

∞
∑

k=0

ak

k
∑

j=0

k(k − 1) · · · · · · (k − j + 1)

j!
(x− z)jzk−j

=
∞
∑

j=0

(
∑

k≥j

k(k − 1) · · · · · · (k − j + 1)akz
k−j)

(x− z)j

j!

=
∞
∑

j=0

f (j)(z)

j!
(x− z)j

for all x ∈ (z − δ, z + δ). The proof is finished. �

Example 9.5. Let α ∈ R. Recall that (1 + x)α is defined by eα ln(1+x) for x > −1.
Now for each k ∈ N, put

(

α

k

)

=







α(α − 1) · · · · · · (α− k + 1)

k!
if k 6= 0;

1 if x = 0.

Then

f(x) := (1 + x)α =

∞
∑

k=0

(

α

k

)

xk

whenever |x| < 1.
Consequently, f(x) is analytic on (−1, 1).

Proof. Notice that f (k)(x) = α(α− 1) · · · · · · (α− k + 1)(1 + x)α−k for |x| < 1.
Fix |x| < 1. Then by Proposition 9.1, for each positive integer n we have

f(x) =
n−1
∑

k=0

f (k)(0)

k!
xk +

∫ x

0

f (n)(t)

(n − 1)!
(x− t)n−1dt

So by the mean value theorem for integrals, for each positive integer n, there is ξn between 0 and x
such that

∫ x

0

f (n)(t)

(n− 1)!
(x− t)n−1dt =

f (n)(ξn)

(n − 1)!
(x− ξn)

n−1x

Now write ξn = ηnx for some 0 < ηn < 1 and Rn(x) :=
f (n)(ξn)

(n − 1)!
(x− ξn)

n−1x. Then

Rn(x) = (α−n+1)

(

α

n− 1

)

(1+ηnx)
α−n(x−ηnx)

n−1x = (α−n+1)

(

α

n− 1

)

xn(1+ηnx)
α−1(

1− ηn
1 + ηnx

)n−1.



21

We need to show that Rn(x) → 0 as n → ∞, that is the Taylor series of f centered at 0 converges

to f . By the Ratio Test, it is easy to see that the series

∞
∑

k=0

(α − k + 1)

(

α

k − 1

)

yk is convergent as

|y| < 1. This tells us that lim
n

|(α− n+ 1)

(

α

n− 1

)

xn| = 0.

On the other hand, note that we always have 0 < 1−ηn < 1+ηnx for all n because x > −1. Thus, we
can now conclude that Rn(x) → 0 as |x| < 1. The proof is finished. Finally the last assertion follows
from Proposition 9.4 at once. The proof is complete. �
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